CS 505: Introduction to
Natural Language Processing

Wayne Snyder
Boston University

Lecture 17 — Neural Network Tuning and Advanced Features, Part 2

(Model Design + Hyperparameters) — Model Parameters

The building blocks: The knobs that you The variables ’
| | can tum:) | learned from the

- #layers \ < - Leaming - < data: '

Activations | | (‘ '

opoul - weights ’

Lecture Plan

Best Practices and Advanced Features of Neural Networks for NLP

o More types of layers:
« Convolutional & Pooling
 Embedding

o Network architectures for NLP
 How deep?

e How wide?

Convolutional Neural Networks

Convolutional nueral networks have had great success in image processing,
and to a more limited degree, in NLP.

CNNs add convolution and pooling layers to focus on small regions of the data
(here, images). Each input to the next layer is calculated as the dot product of
the convolution kernel with a small region of the image.

Center element of the kernel is placed over the (0% 0)
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Source pixel

Convolution

New pixel value (destination pixel)

Convolutional Neural Networks

The convolution kernels are moved around the image, perhaps by some
skip....

Sp = 7 74 Y ~
& i I 7 7
fh-
—— A N <
f=3 Zero padding Y os” Ve Yes”

Convolutional Neural Networks

Since data is shared in the region covered by the kernel, various
“features” of the image can be recognized in multiple places around the
image:

Feature
Map 2

| Feature

e u\\\f: YRR

Map 1

| | ."...“ "

Vertical filter || = Horizontal filter

e TR

Convolutional Neural Networks

A pooling layer performs dimensionality reduction by averaging (or taking
the maximum) of small regions in the previous layer:

Convolutional Neural Networks

And layers can have multiple “maps” and be stacked:

Convolutional

Feature Q layer 2
[T/ Map 1 '
A r
y~" QL i
Filters : =
: Convolutional
/7 Map1 layer 1
Ay Va2
Input layer
Channels

Red
Green
Blue

Convolutional Neural Networks

It is typical to alternate convolution and pooling layers and end with fully

connected layers before output:

=2 1

|

e

]
OOt IO
LTI
o
\J

Convolution

Pooling Convolution Pooling Fully connected

Convolutional Neural Networks

So... if this is an NLP class, why are we discussing CNNs for images??

Three reasons:

One: Language is not just represented by linear sequences of Unicode symbols,

it also exists in handwritten form!

In fact, the very first big success in NNs was achieved by Yann
LeCunn and colleagues at Bell Labs in the 1990s, solving the
problem of handwritten digit and letter recognition using CNNs:

Gradient-Based Learning Applied
to Document Recognition

YANN LECUN, MEMBER, IEEE, LEON BOTTOU, YOSHUA BENGIO, AND PATRICK HAFFNER

Invited Paper

Table 14-1. LeNet-5 architecture

Layer Type
Fully Connected —

Fully Connected —

Out
F
()
54
a
S2
4]
In

Convolution
Avg Pooling
Convolution
Avg Pooling
Convolution
Input

Maps ~Size

120
16
16
6

6

1

10 =
84 -
1X1 5x%5
5x5 2x2
10x10 5x5
14x14 2x2
28x28 5x5
32%32 -

1
2
1
2
1

Kernel size Stride Activation

RBF

tanh
tanh
tanh
tanh
tanh
tanh

he — will
she” with
me wide

call— pen

will

aham

abe——

_~when

TS you <—were

Figure.3. Recognition o

linc

Ae

he ~_

be

Off-line

us
~ig "

N

Aeck,

_~ back

bank

~

Convolutional Neural Networks

The dataset from that classic paper is now the “Hello World” of neural
network programming!

MNIST Dataset

The MNIST database of handwritten digits (http://yann

Data Card Code (78) Discussion (0)

About Dataset

Jecun

.com)

NOohwxrI 08
N~¥NN -\

NENND =

g S NS N80\

SDLQOPraxNQIuw

6N By~~~

S QNN W

SR UYsronNO X xS

NONONO LY —

Convolutional Neural Networks

ICa

ing histori

ibing

d transcr

ing an

decod

IN

d

lar techniques are use

imi

S

manuscripts (handwritten many centuries before Unicode!):

WM ® 1 N EE =

e 2 O A S B S S LA
ﬂmﬂﬂldﬁﬁﬂm Tn e DA R E
430 A e S A T S R TR S
AR T] i 2020 B A 1 4 I

N S0 S0 B N I N N B 1 TR P A R AR) TN
2 0T B T R0 P SRS e ST e B Sl NE R
AT | A D (1S 0 I T 40 TN A R
4 3 | O A 1 SRR AR A N e
5 W ol 44 T R D HE B4) TR B S s T TR W
WA A TH T NS TR TS AR 0 R) TR R
8 g S 2NN | N T OB 42 1K IR S BE N IV
t!!ttiléeﬁ#ﬁubﬁii&ﬂ&ﬂﬁn
ROl R L AP] 88 YR M ST o

AR B RN AR R R
A Rl T S S - A e
TN I T -) A =
B0 0 2 TR 1 2T Y

Tomuedsractn: TRAGRCELTE S A SRR HEGRALRNEZANNBFRERTOZ

Convolutional Neural Networks

Second: 2D CNNs turned out to not be that useful (say in matrices of
embedding sequences), but 1D CNNs (which essentially recognize N-

grams) have proved useful in sentiment analysis — essentially the
convolution recognizes N-grams!

Length

>

2 Ei;-l" -m AN NN
s =

g 3 O l- >]
3 “'_l :.T‘l l- i

Ll i Ch

Convolutions Max-pooling Conv. and Pool. layers Fully-connected

Source: X Zhang, J. Zhao, Y. LeCUN [201&) Character-evel Canvalutiana Networks for Text Classficatian

i love it ['I‘his[i%il"d yx‘hat]

(a) (b)

c.\pcc(ch !]

Convolutional Neural Networks

Third: NLP techniques based on CNNs are used in many non-linguistic
contexts, particularly in analyzing DNA and other linear molecules:

W) Check for updates

OFEN Improving protein succinylation
sites prediction using embeddings
from protein language model

Suresh Pokharel’, Pawel Pratyush?, Michael Heinzinger®>?, Robert H. Newman®* &

Dukka B. KC**
Embedding Layer
2 Flatten Layer
. (2304)
InposPeptide 2D Convolution Layer 2D Maxpooling Layer
(33) = 43 Dense Layer
(Filter=32, Kernel=17x3) (2x2)
l (16)
Integer Encoding Word
(33) Embedding

. .
. .
a » »
: : : Output
' » Layer
B - 5
I oy ¢ ’ I)
Dropout Dropout
(0.2) (0.2)

Figure 1. Architecture of supervised word embedding based model using a convolutional neural network.

Convolutional Neural Networks

CNNs in Pytorch:

class CNN Netl(nn.Module):

def

def

__init_(self):

super().__init_ ()

self.convl = nn.Conv2d(1l, 32, kernel size=3)
self.conv2 = nn.Conv2d(32, 64, kernel size=3)
self.conv2 drop = nn.Dropout2d(0.4)

self.fc2 = nn.Linear(500, 100)

self.fc3 = nn.Linear(100, 10)

forward(self, x):

= self.convl(x)

= F.relu(F.max pool2d(x, 2))
= self.conv2(x)

= self.conv2 drop(x)

= F.relu(F.max pool2d(x, 2))
X.view(-1, 1600)
F.relu(self.fcl(x))

= self.fc2(x)

x = self.fc3(x)

return Xx

E I
I

Embedding Layers

Current NLP systems all use word embeddings as inputs:

wgr NNP MD VB DT NN
y

5 AN

e Calls J(e J(aalle J(oo (1o

allln
T
RNN h
S O B

Embeddings e

nadllln
-
ITI

Words Janet will back the bill

Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.

Therefore, Pytorch and other NN platforms provide built-in embedding
layers....

Embedding Layers

An embedding layer is a simple lookup table which maps indices to embedding
vectors (an array of D floats for some dimension D).

By default, the embedding layer is untrained, so the vectors are random floats:

In [19]: 1 class EmbeddingExample(nn.Module):
def init (self):
super().__init__ ()
self.embedding layer = nn.Embedding(10,50)
def forward(self,x):
x = self.embedding layer(x)
return x

11 embedding model = EmbeddingExample()

embedding model(torch.tensor(0))

Out[19]: tensor([-1.5466, -0.7189, -1.3827, -0.1787, 1.0937, 1.8469, 0.3557, 1.8965,
1.1616, -1.3141, -0.7681, 0.1190, -0.5923, -0.2816, 0.9321, 1.2912,

-1.0337, -0.4085, 0.8838, 0.4950, -0.4681, 1.2889, -1.0458, 1.2371,

-0.7286, -1.3844, -0.5985, -0.8621, -1.8770, -3.3333, -0.2535, -0.0394,

-0.5554, -0.1743, 0.7165, 0.3712, 1.1531, 0.9583, 1.9512, 0.3636,

0.9459, -2.3356, 0.6509, 1.3928, -1.9889, 0.0838, 0.2376, 0.0719,

-1.6311, -0.0457], grad_fn=<EmbeddingBackward0>)

Embedding Layers

The vocabulary is represented by (tensor) indices from into the vocabulary array:

In [20]: 1 sentence = "This is a sentence of words for the embedding example"

3 words sentence.lower().split()

5 wvocab sorted(set(words))

vocab_idx = { w : torch.tensor(i) for (i,w) in list(enumerate(vocab)) }

vocab idx

Out[20]: {'a': tensor(0),
'embedding': tensor(1l),
'example': tensor(2),
'for': tensor(3),
'is': tensor(4),
'of': tensor(5),
'sentence': tensor(6),
'the': tensor(7),
'this': tensor(8),
'words': tensor(9)}

In [21]: 1 embedding model(vocab_ idx['sentence'])

Out[21]: tensor([-1.0522, -1.5031, -0.8273, -0.2849, -0.6338, 0.9456, -0.1177, 0.4843,
-1.0190, 0.4294, -0.6801, -0.7463, 2.4668, -2.3485, 0.1480, 0.5330,
0.3156, -1.5070, -0.2272, 1.5661, -1.4879, -0.0688, 0.4833, 0.7480,
-1.4878, -0.4362, 0.4736, -0.5361, -0.0888, -0.4081, -0.4166, 0.2677,
-0.4611, -1.4399, -0.4965, 0.4376, 2.4829, -0.4196, 1.4912, 0.2124,
0.1241, 0.4749, -0.3347, -0.2382, 0.2249, 0.5873, 1.4045, 0.9617,
-0.6000, -0.4867], grad_ fn=<EmbeddingBackward0>)

Embedding Layers

Embedding Layers can be used in two (overlapping) ways:

o You can create randomly-initialized embeddings, and train them via
backprop as you process sequences of words in your task.

o You can load pretrained embeddings such a GloVe and use them as
iS; or

o You can do both: import pretrained embeddings and further train
them to specialize to your corpus.

Embedding Layers

In Pytorch using torchtext:

The only complication is that for each word in our vocabulary, we have to replace the initial random
weights with the GloVe embedding if it is available, else initialize randomly.

1 # Load pre-trained GloVe embeddings
def load glove embeddings(path):

N

embeddings = load glove embeddings('glove.6B.100d.txt’)

TEXT = Field(tokenize='spacy', tokenizer language='en core web sm', lower=True)

~SS on O e W

o

TEXT.build vocab(train dataset, vectors=GloVe(name='6B', dim=100))

weight matrix = torch.zeros((len(TEXT.vocab), 100))

weight matrix[index] = embeddings.get(word, torch.randn(embedding dim))

1
1
1} for word, index in vocab.stoi.items():
1
1

15 class EmbeddingLayer(nn.Module):

16

17 def init (self, weights matrix):

18 super().__init_ ()

19 num_embeddings, embedding dim = weights matrix.size()

20 self.embeddings = nn.Embedding.from pretrained(weights matrix, freeze=False)
21

22 def forward(self, input):

23 return self.embeddings(input)

24

25

26 embedding model = EmbeddingLayer(weight matrix)
7

Network Geometries

The biggest remaining question is then:
How many layers, how wide, and what type?
As usual, “it depends,” but some general principles have emerged:

1. Deep networks are necessary for image processing, where the information is
found in hierarchical groupings of image features:

fc6 fc7 fc8

e e]
1x1x4096 1x1x1000

7x512

@ convolution+ReLLU

[j] max pooling

) fully connected+ReLU

Network Geometries: How wide and deep?

2. Information in text is sequential, with dependencies among words, but FFNNs
and (B)RNNs have a limited ability to deal with long-range dependencies.

Hence, deep networks are not as useful — until we introduce transformers!

FFENN:

(B)RNN:

Linear Layer

Linear Layer

Embedding Layer

Linear Layer

Linear Layer

Recurrent Layer

Embedding Layer

1 -2 linear
layers

1 -2 linear
layers

Network Geometries: How wide and deep?

3. Each neuron has essentially a linear discrimination power. You can (very
roughly) consider each neuron having the ability to draw a line (or hyperplane)
distinguishing two regions of your data.

Costat step 12 = 0.451 200 Labelled data & model output

cost e fargett
-+ denvative atp 175 =— fittedline:y=x*p

150
125

100

target: t

Q75

cost: D |t—y|?

050

025

00 05 10 15 20 25 30 35 40
parameter: p input: X

10

Network Geometries: How wide and deep?

Bumper Sticker Version: Each NN unit can draw a single line and hence can
calculate Boolean functions of inputs.

Example: A single unit can perform binary classification on 4 points:

(1,1) ©1) oY oy T (11) ©1) oY
+* + ¢
L e l—k

(1,0) (0,0) (1,0) (0,0) +(1,0)

y not x and y x and noty

NOTE: This is happening in multiple
dimensions, so we are really trying to draw
hyperplanes!

Network Geometries: How wide and deep?

Adding neurons allows us to draw multiple hyperplanes:

Network Geometries: How wide and deep?

Adding neurons allows us to draw multiple hyperplanes:

Network Geometries: How wide and deep?

Adding neurons allows us to draw multiple hyperplanes:

Network Geometries: How wide and deep?

Complex data sets involve lots of combinations of lines!

100

¥

Network Geometries: How wide and deep?
Conclusions:

o For a given NLP data set, there is a particular width of layer that will have
enough discriminatory power to do the task, and

o Adding more neurons will
* Not necessarily improve its accuracy,
» Lead to excessive training time,
* More overfitting, and
* Less ability to generalize.

o You are better off experimenting with different types of layers and not just
increasing the depth and width.

o Recurrent networks are best for simpler NLP tasks (such as classification)

o Transformers are best for tasks involving sequence-to-sequence tasks
such as machine translation, summarization, and conversation agents.

So.. On to transformers!

