
Lecture 17 – Neural Network Tuning and Advanced Features, Part 2

CS 505: Introduction to
Natural Language Processing

Wayne Snyder
Boston University

Lecture Plan

Best Practices and Advanced Features of Neural Networks for NLP

o More types of layers:

• Convolutional & Pooling

• Embedding

o Network architectures for NLP

• How deep?

• How wide?

Convolutional Neural Networks

Convolutional nueral networks have had great success in image processing,
and to a more limited degree, in NLP.

CNNs add convolution and pooling layers to focus on small regions of the data
(here, images). Each input to the next layer is calculated as the dot product of
the convolution kernel with a small region of the image.

The convolution kernels are moved around the image, perhaps by some
skip....

Convolutional Neural Networks

Since data is shared in the region covered by the kernel, various
“features” of the image can be recognized in multiple places around the
image:

Convolutional Neural Networks

A pooling layer performs dimensionality reduction by averaging (or taking
the maximum) of small regions in the previous layer:

Convolutional Neural Networks

And layers can have multiple “maps” and be stacked:

Convolutional Neural Networks

It is typical to alternate convolution and pooling layers and end with fully
connected layers before output:

Convolutional Neural Networks

So… if this is an NLP class, why are we discussing CNNs for images??

Three reasons:

One: Language is not just represented by linear sequences of Unicode symbols,
it also exists in handwritten form!

In fact, the very first big success in NNs was achieved by Yann
LeCunn and colleagues at Bell Labs in the 1990s, solving the
problem of handwritten digit and letter recognition using CNNs:

Convolutional Neural Networks

The dataset from that classic paper is now the “Hello World” of neural
network programming!

Convolutional Neural Networks

Similar techniques are used in decoding and transcribing historical
manuscripts (handwritten many centuries before Unicode!):

Convolutional Neural Networks

Second: 2D CNNs turned out to not be that useful (say in matrices of
embedding sequences), but 1D CNNs (which essentially recognize N-
grams) have proved useful in sentiment analysis – essentially the
convolution recognizes N-grams!

Convolutional Neural Networks

Third: NLP techniques based on CNNs are used in many non-linguistic
contexts, particularly in analyzing DNA and other linear molecules:

Convolutional Neural Networks

CNNs in Pytorch:

Convolutional Neural Networks

Embedding Layers
Current NLP systems all use word embeddings as inputs:

Therefore, Pytorch and other NN platforms provide built-in embedding
layers….

Embedding Layers

An embedding layer is a simple lookup table which maps indices to embedding
vectors (an array of D floats for some dimension D).

By default, the embedding layer is untrained, so the vectors are random floats:

Embedding Layers

The vocabulary is represented by (tensor) indices from into the vocabulary array:

Embedding Layers

Embedding Layers can be used in two (overlapping) ways:

o You can create randomly-initialized embeddings, and train them via
backprop as you process sequences of words in your task.

o You can load pretrained embeddings such a GloVe and use them as
is; or

o You can do both: import pretrained embeddings and further train
them to specialize to your corpus.

Embedding Layers
In Pytorch using torchtext:

The only complication is that for each word in our vocabulary, we have to replace the initial random
weights with the GloVe embedding if it is available, else initialize randomly.

Network Geometries
The biggest remaining question is then:

 How many layers, how wide, and what type?

As usual, “it depends,” but some general principles have emerged:

1. Deep networks are necessary for image processing, where the information is
found in hierarchical groupings of image features:

Network Geometries: How wide and deep?
2. Information in text is sequential, with dependencies among words, but FFNNs
and (B)RNNs have a limited ability to deal with long-range dependencies.

Hence, deep networks are not as useful – until we introduce transformers!

Embedding Layer

Linear Layer

Linear Layer
1 – 2 linear
layers

FFNN:

Embedding Layer

Linear Layer

Linear Layer
1 – 2 linear
layers

(B)RNN:

Recurrent Layer

Network Geometries: How wide and deep?
3. Each neuron has essentially a linear discrimination power. You can (very
roughly) consider each neuron having the ability to draw a line (or hyperplane)
distinguishing two regions of your data.

Bumper Sticker Version: Each NN unit can draw a single line and hence can
calculate Boolean functions of inputs.

Example: A single unit can perform binary classification on 4 points:

+
-

+
-

x and y x or y x y

+
-

+
-

not x and y

+

-

x and not y

-

+

Network Geometries: How wide and deep?

NOTE: This is happening in multiple
dimensions, so we are really trying to draw
hyperplanes!

Adding neurons allows us to draw multiple hyperplanes:

Network Geometries: How wide and deep?

Adding neurons allows us to draw multiple hyperplanes:

Network Geometries: How wide and deep?

Adding neurons allows us to draw multiple hyperplanes:

Network Geometries: How wide and deep?

Complex data sets involve lots of combinations of lines!

Network Geometries: How wide and deep?

Conclusions:

o For a given NLP data set, there is a particular width of layer that will have
enough discriminatory power to do the task, and

o Adding more neurons will

• Not necessarily improve its accuracy,

• Lead to excessive training time,

• More overfitting, and

• Less ability to generalize.

o You are better off experimenting with different types of layers and not just
increasing the depth and width.

o Recurrent networks are best for simpler NLP tasks (such as classification)

o Transformers are best for tasks involving sequence-to-sequence tasks
such as machine translation, summarization, and conversation agents.

So.. On to transformers!

Network Geometries: How wide and deep?

